# **Kepros Posture Training Device**

**DEC1605** 

#### The Team

**Team Leader:** Tony Branson (tbranson@iastate.edu)

Key Concept Holder: Samuel Eue (smeue@iastate.edu)

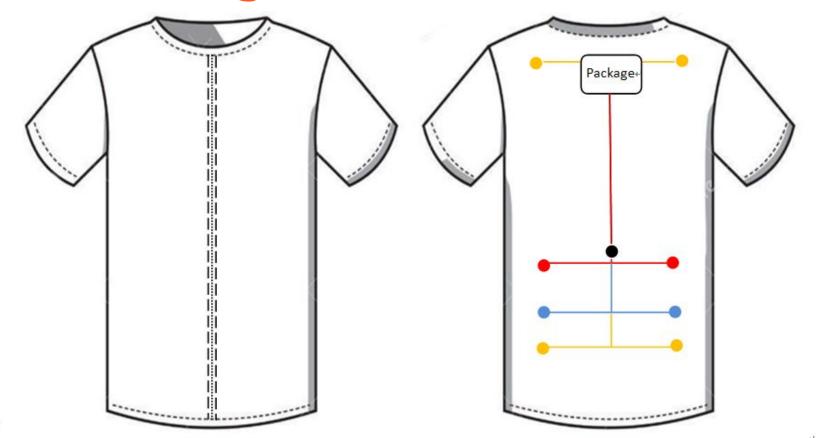
Web Master: Jiahui Quan (jiahui@iastate.edu)

Communications Lead: Benjamin Engh (bcengh@iastate.edu)

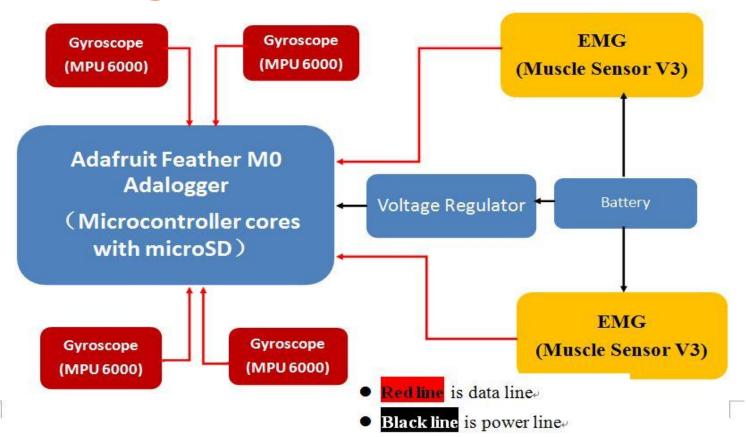
**Client:** KeprosPT & Ted Kepros

**Advisor:** Jeremias Sauceda

#### **General Info of the Device**


What: A wearable shirt that measures user posture over a specified time period

**Users:** Patients of Physical Therapists (athletes, anyone with back pain)


**Customer:** Physical therapists

**Why:** Gather data unattainable in the current market

# **General Design**

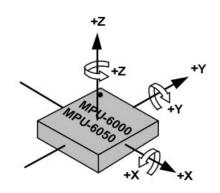


### **Block Diagram**



### **Sensors**

#### Muscle Sensor V3 (EMG)

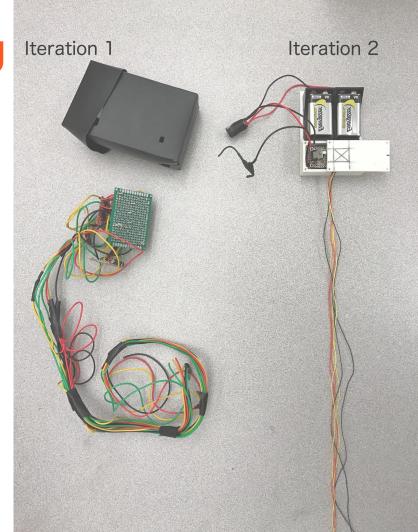

Measure muscle activities by detecting its electric potential



3-axis accelerometer

3-axis gyroscope

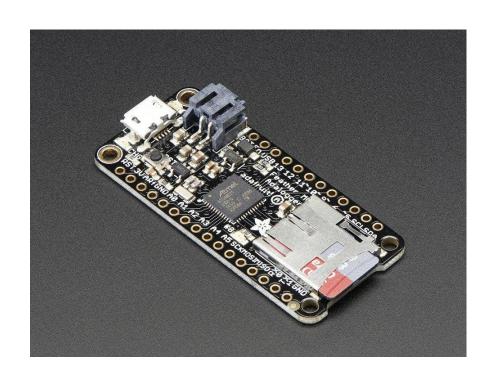





## **Problem: Big and Clunky**

**Issue:** The capstone was a bunch of breadboards and wires haphazardly stored in a card game deck box.

**Reason:** Working with the large box on the hip would interfere with measurements


**Solution:** Rework the wiring harness and microcontroller to fit in a smaller more manageable space



### The Brain

#### The Adalogger M0

- -Higher clock speed
- -Variable analog pins
- -Integrated SD reader



### Problem: Adapting the New to the Old

Issue: Getting familiar with the ins and out of the new and old hardware

**Reason:** Getting functionality for final product

**Solution:** Hard work and lots of determination

## Software we are using

#### **Arduino IDE**

Using Arduino Language and libraries to make the Adafruit board compatible

Using 2 I2C buses to read from 4 sensors

#### **Eclipse**

Java Code, Runs Arduino Code

Swing for GUI

Library to read from Arduino's Serial, Saving Data to microSD card

## Where we are currently

Reading data from 4 sensors simultaneously

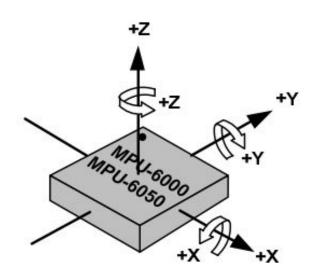
Inconsistent readings, address not always recognized

Reading values from the EMG powered from battery connect to the bicep and back muscle

Converting Data to Angles

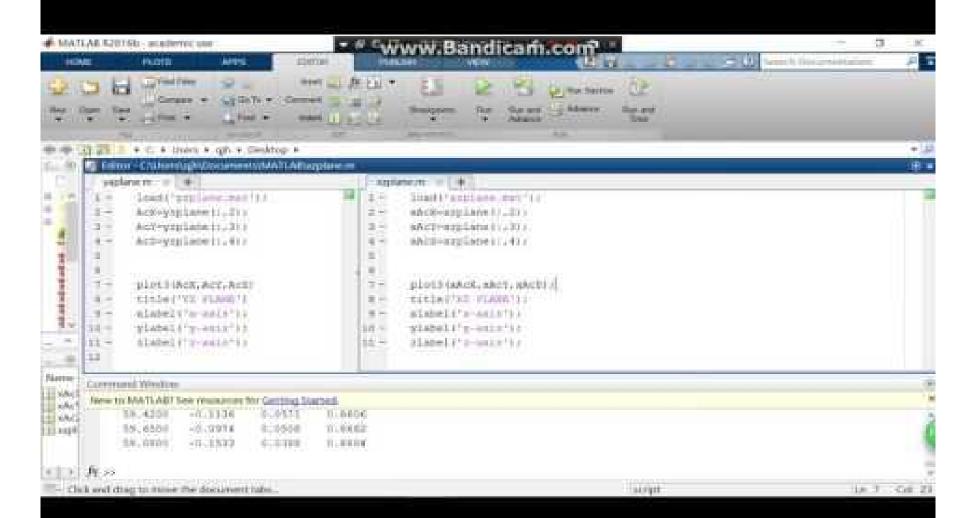
Testing angular data with our measured data

### Demo



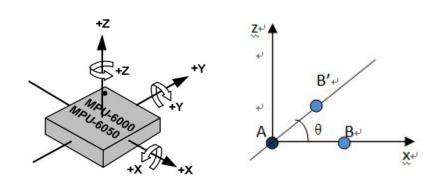

### **Understandable Angle Readings**

• 3-axis accelerometer

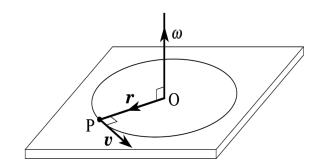

Acceleration component due to gravity

3-axis gyroscope angular velocity




### **Understandable Angle Readings**

```
Uyı V. UV | Uyı
                    I. VU
                          MUL
                                 00.00
                                        UyA
                                                1. 00
AcX = 7.84
             AcY = -2.86
                                                     GyY = 10.12
                          AcZ = 74.82
                                        GyX = -2.61
                                                                    GyZ = -156.43;
AcX = 35.29
             AcY = 6.99
                          AcZ = 74.55
                                        GyX = 0.44
                                                     GyY = -2.63
                                                                   GyZ = -2.58;
             AcY = -0.81 \mid AcZ = 82.31
AcX = -1.87
                                        GyX = -2.24 | GyY = 0.29
                                                                    GyZ = -0.81;
AcX = 0.57
             AcY = -0.44 \mid AcZ = 80.02 \mid
                                        GvX = -2.17 GvY = 0.73
                                                                   GvZ = -0.47:
AcX = 0.75
             AcY = -1.52 \mid AcZ = 79.74 \mid GyX = -2.03 \mid GyY = 0.55 \mid
                                                                   GvZ = -0.35:
AcX = 0.33
             AcY = -0.79 \mid AcZ = 79.76 \mid
                                        GyX = -2.03 GyY = 0.44
                                                                   GyZ = -0.63:
AcX = 0.86
                         AcZ = 80.09
                                                                   GyZ = -0.70:
             AcY = -0.40
                                        GvX = -2.37 \mid GvY = 0.35 \mid
                         AcZ = 80.55
                                        GyX = -2.02
                                                     G_{V}Y = -0.03
                                                                   GvZ = 1.53:
AcX = 1.01
             AcY = 1.74
AcX = 0.66
             AcY = -1.65
                          AcZ = 81.80
                                        GyX = -1.85
                                                      GyY = 0.29
                                                                   GyZ = 129.91:
AcX = -25.93
              AcY = -16.06 \mid AcZ = 78.09 \mid GyX = 0.06
                                                      GyY = 1.91
                                                                     GvZ = 59.07:
AcX = 0.20
             AcY = -0.51
                          AcZ = 80.29
                                        GvX = -2.60
                                                      GvY = 1.44
                                                                   GyZ = -0.96:
                         AcZ = 80.35
             AcY = -0.44
                                        GvX = -2.60 | GvY = 0.58
                                                                   GvZ = -0.72:
AcX = 0.57
                                                                   GyZ = -71.76:
AcX = 1.60
             AcY = -0.81
                         AcZ = 80.18 GyX = -2.53 GyY = 1.51
             AcY = 7.62
                         AcZ = 73.92
                                                     GyY = -0.40
                                                                   GyZ = -437.54:
AcX = 8.46
                                       GyX = -1.68
AcX = 3.78
                         AcZ = 77.56
             AcY = 7.01
                                       GyX = -2.26
                                                     GvY = -0.95
                                                                   GyZ = -0.29:
AcX = 1.27
             AcY = -0.70
                         AcZ = 81.23
                                        GyX = -1.97 | GyY = 0.89
                                                                   GyZ = -0.87;
                          AcZ = 79.89
                                        GvX = -2.17 | GvY = 0.66
                                                                   GvZ = -0.75:
AcX = 1.43
             AcY = -1.10
```

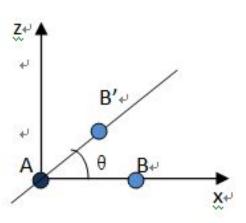



### **Understandable Angle Readings**

3-axis accelerometer
 xz-plane measurement
 yz-plane measurement



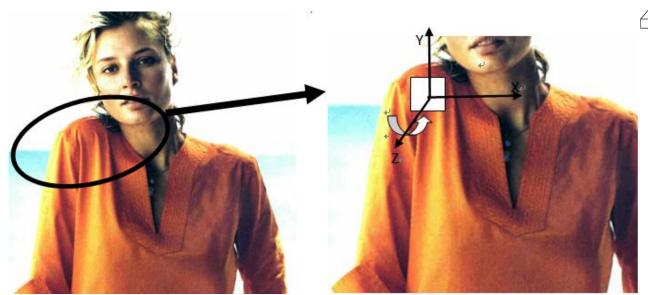
3-axis gyroscope (angular velocity)
 xy-plane measurement

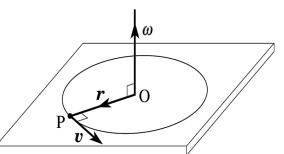


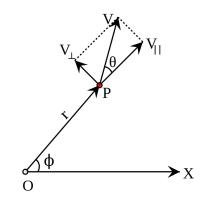

### **Angle Calculation Formula**

Accelerometer







$$\theta = \tan^{-1}(AcX_{B'-B}/AcZ_{B'-B})$$

## **Angle Calculation Formula**

Gyroscope







$$\emptyset = \int_{t_1}^{t_2} \omega \, dt_{+}$$

## Test Plan: Custom Agile Methodology

#### Hardware:

- a. Phase One Proof of design concept
- **b. Phase Two -** Optimization of design
- **c. Phase Three -** Integration with device

#### Software:

- a. Phase One Proof of design concept
- **b. Phase Two -** Optimization of design
- **c. Phase Three -** Integration with device

#### Prototype:

- a. Phase 1 Collaboration of components
- **b.** Phase 2 Optimization of prototype device

## **Questions and Wrap Up**

### Costs

Gyroscope/Accelerometer (MPU): \$50.00 each (4 total)

Three pad EMG: \$45.00

Adalogger Board: \$35.00

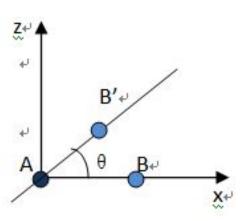
Wiring and Soldering: \$5.00

Casing: \$2.00

9V Batteries: \$5.00

Shirt: \$40.00

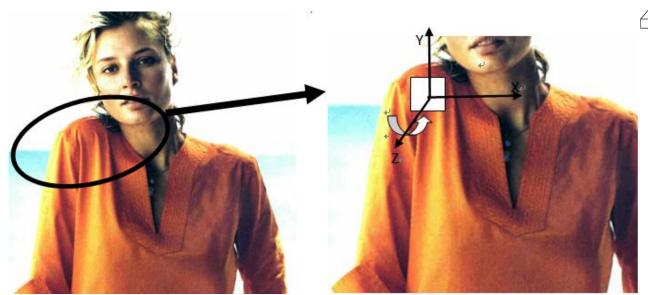
Conductive Adhesive Padding: \$15.00

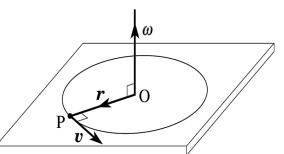

SD Card: \$15.00

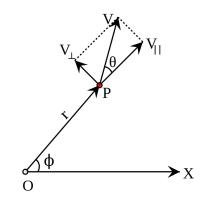
### **Angle Calculation Formula**

Accelerometer







$$\theta = \tan^{-1}(AcX_B / AcZ_B)$$

## **Angle Calculation Formula**

Gyroscope







$$\emptyset = \int_{t_1}^{t_2} \omega \, dt_{+}$$